

TASKS

LC2030 – TRAINING

LC2030-Training

1	TASKS – OPEN-LOOP CONTROL WITH GRAFCET.....	1
1.1	INTRODUCING EXAMPLE WITH DETAILED DESCRIPTION, TASK: LIGHT CHAIN	1
1.1	TASK LIGHT CHAIN	7
1.2	TASK – TRAFFIC LIGHT CONTROL	7
1.3	TASKS WITH SWITCHES AND PUSH BUTTONS	7
1.4	OPERATION STORAGE TANK.....	8
1.5	PRODUCTION MIXING REACTOR	8
2	KEYBOARD LAYOUT FOR GRAFCET - TERMS	10
3	TASKS – CONTROL WITH LOGIC DIAGRAMS	11
3.1	COMMISSIONING OF THE PLANT WITH MANUAL CONTROL	11
3.2	DISPLAY OF EMPTY OR FULL WITH LIGHT DETECTORS / GATE CIRCUIT.....	11
3.3	DISPLAY OF A SENSOR ERROR / GATE WITH SIMPLIFICATION	12
3.4	PUMP CONTROL GATES	13
3.5	CONTROL OF PUMP 3 VIA A PUSH BUTTON	14
3.6	INSTRUCTIONS WITH NORMALLY CLOSED / NORMALLY OPEN CONTACT.....	14
3.7	CONTROL WITH PUSH BUTTONS / INTRODUCTION RS-MEMORIES.....	15
3.8	PUMP CONTROL WITH MEMORIES AND GATES.....	15
3.9	ERROR MESSAGE WITH RECEIPT.....	16
3.10	CONTROL WITH TIMER	17
3.11	MIXED OPERATION WITH RS-STORES	17
4	TASKS CONTROL TECHNOLOGY	19
4.1	INTRODUCTION.....	19
4.2	RECORDING THE PUMP CURVE	21
4.3	LIQUID LEVEL CONTROL LIC101	21
4.3.1	<i>Examination of level control LIC101 with the P controller.....</i>	22
4.3.2	<i>Examination of Level Control LIC101 with the I Controller</i>	23
4.3.3	<i>Examination of the level control LIC101 with PI controller.....</i>	23
4.3.4	<i>Examination of level control LIC101 with PID controller</i>	24
4.3.5	<i>Examination of Level Control LIC101 with Two Position Controller.....</i>	25
4.3.6	<i>Controller Adjustment Methods</i>	25
4.3.7	<i>Method according to Chien/Hrones/Reswick</i>	25
4.3.8	<i>Controller settings of the filling level control LIC101 according to Chien/Hrones/Reswick</i>	27
4.3.9	<i>Controller settings according to rule of thumb for systems without balancing</i>	30
4.4	FLOW CONTROL FIC103	30
4.4.1	<i>Investigation of Flow Control FIC103 with P-Controller</i>	31
4.4.2	<i>Investigation of Flow Control FIC103 with I Controller</i>	31
4.4.3	<i>Examination of the flow control with the PI controller</i>	32
4.4.4	<i>Examination of Flow Control FIC103 with PID controller</i>	32
4.4.5	<i>Examination Flow Control FIC103 with Two position Controller</i>	33
4.4.6	<i>Procedure According to Chien / Hrones / Reswick for Controlled Systems with Compensation</i>	33
4.4.7	<i>Adjustment of Flow Control FIC103 According to Chien / Hrones / Reswick</i>	34
4.5	TEMPERATURE CONTROL TIC102	36
4.5.1	<i>Examination Temperature Control TIC102 with P controller.....</i>	36
4.5.2	<i>Examination of the temperature control with the PI controller</i>	37

LC2030-Training

4.5.3	<i>Examination of Temperature Control TIC102 with PID controller</i>	37
4.5.4	<i>Examination of Temperature Control TIC102 with Two position-Controller</i>	37
4.5.5	<i>Controller Setting Procedure for Temperature Systems according to Müller</i>	38

This document is protected by copyright. All rights reserved, including the translation, reprinting and duplication of the work or parts thereof. No part of this publication may be reproduced, duplicated or distributed in any form without the written permission of Ingenieurbüro Dr.-Ing. Schoop GmbH

1 TASKS – OPEN-LOOP CONTROL WITH GRAFCET

1.1 INTRODUCING EXAMPLE WITH DETAILED DESCRIPTION, TASK: LIGHT CHAIN

TASK 1.1.1: Create a Grafcet diagram, which turns on the lamps P1, P2, P3 one by one, and switches off again after 5 seconds. The process is started by pressing switch HS1.

SOLUTION WITH DETAILED DESCRIPTION

To create a Grafcet plan, you have to press the "Build/Execute" button, for example, from Grafcet page 1. It is the Grafcet editor with a blank page.

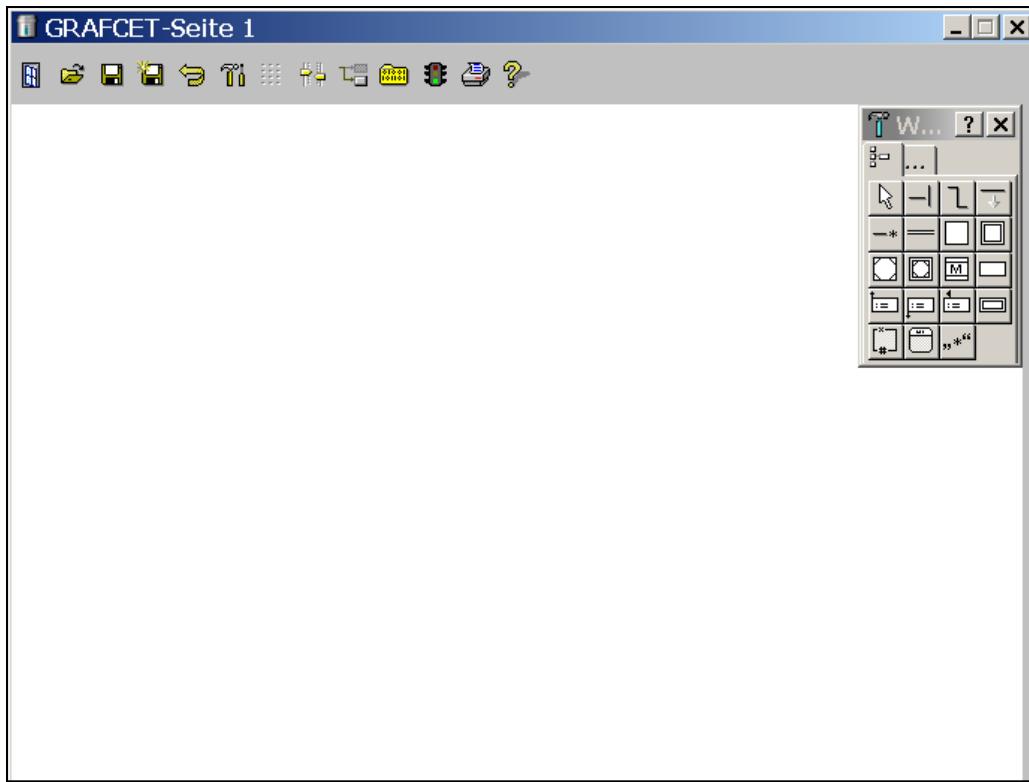


Fig. 1: Grafcet editor with blank page 1

Create the following plan by selecting the corresponding elements (initial step, steps, continuous effective actions, transitions) from the toolbox and place them in the editor.

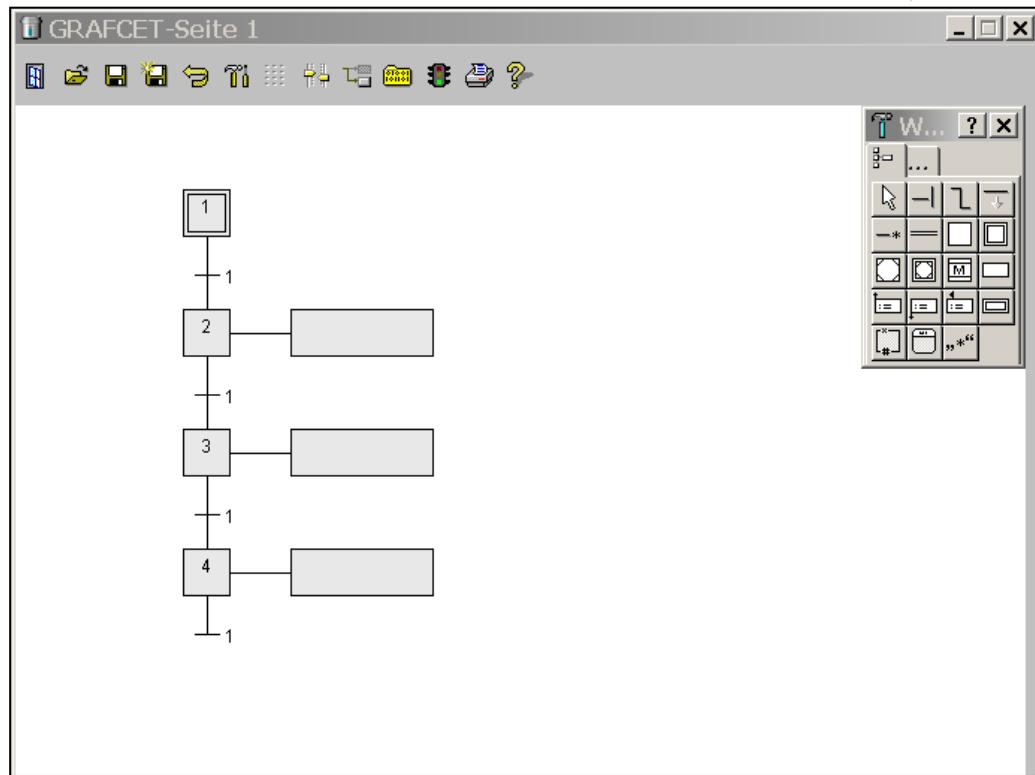


Fig. 2: Grafcet plan with light chain

To set the continuous actions, double-click the blocks. The following dialog appears (Illustration 3)

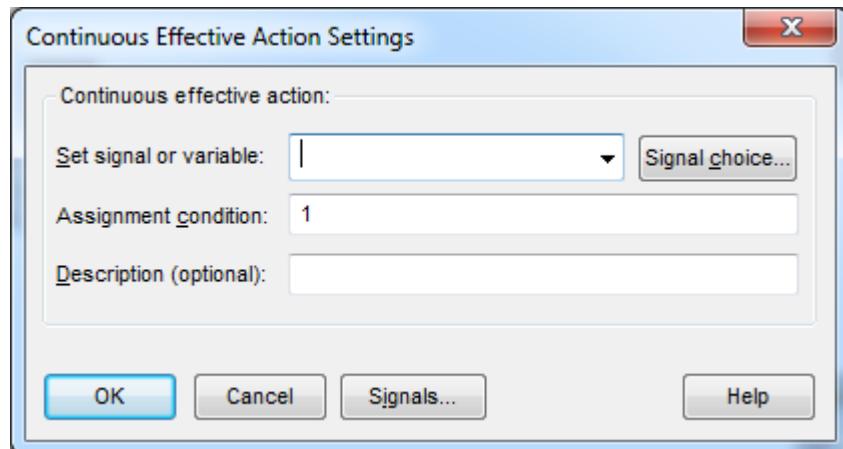


Fig. 3: Setting dialog for continuous action

By pressing the signal choice you get a dialog, in which you can select lamp P1
(Click the plus sign in front of the group lamps or control bin.).

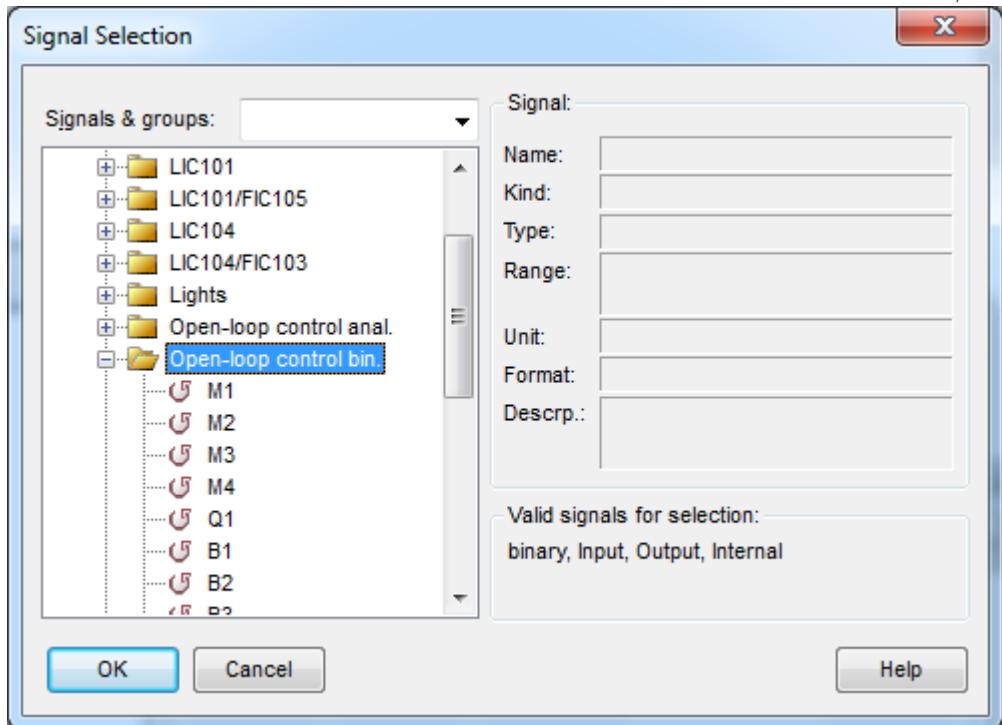


Fig. 4: Alarm changing

By double-clicking on P1 or selecting P1 and pressing OK, the signal P1 is entered into the continuous action. Continue with the other two continuous actions and select P2 and P3.

To set the transitions, double-click the transition. The following dialogue appears.

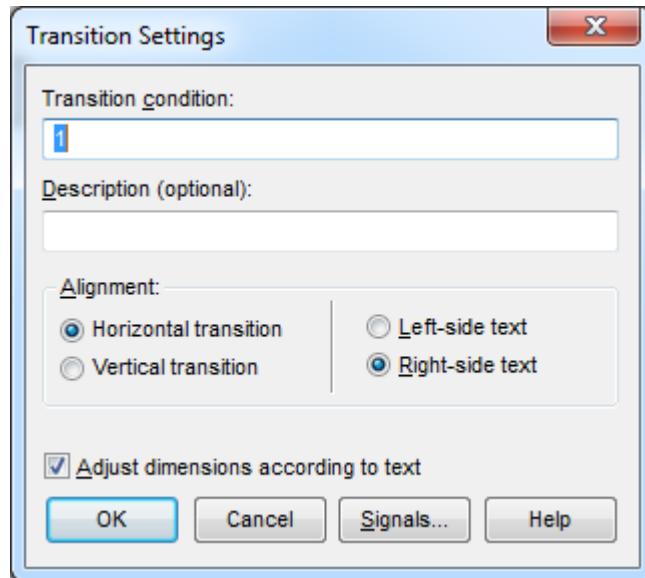


Fig. 5: Setting transitions

Since the lamps should light up only when the HS1 switch is pressed, enter HS1 for the first transition after the initial step 1 for the transition condition.

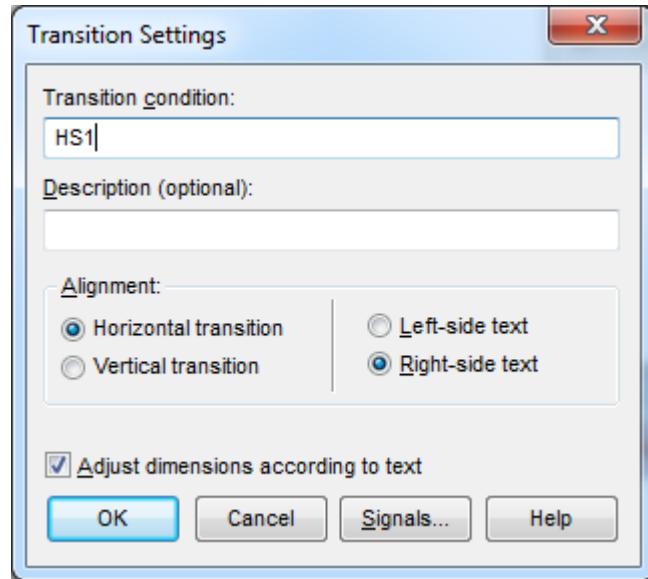


Fig. 6: transition condition HS1

The lamps should light for 5 seconds. Therefore the transition condition 5s / X2 must be entered after step 2 (fig. 8). 5s / X2 means that the transition condition is suffused (forwarded) if step 2 was active for exactly 5 seconds. Correspondingly, you can set the transitions according to steps 3 and 4.

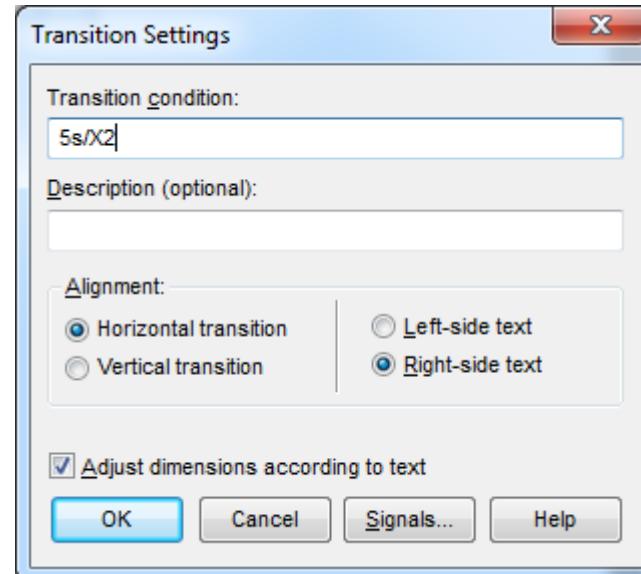


Fig. 7: Transition condition: 5 seconds delay after step 2

This will give you the following Grafcet plan for the lighting chain.

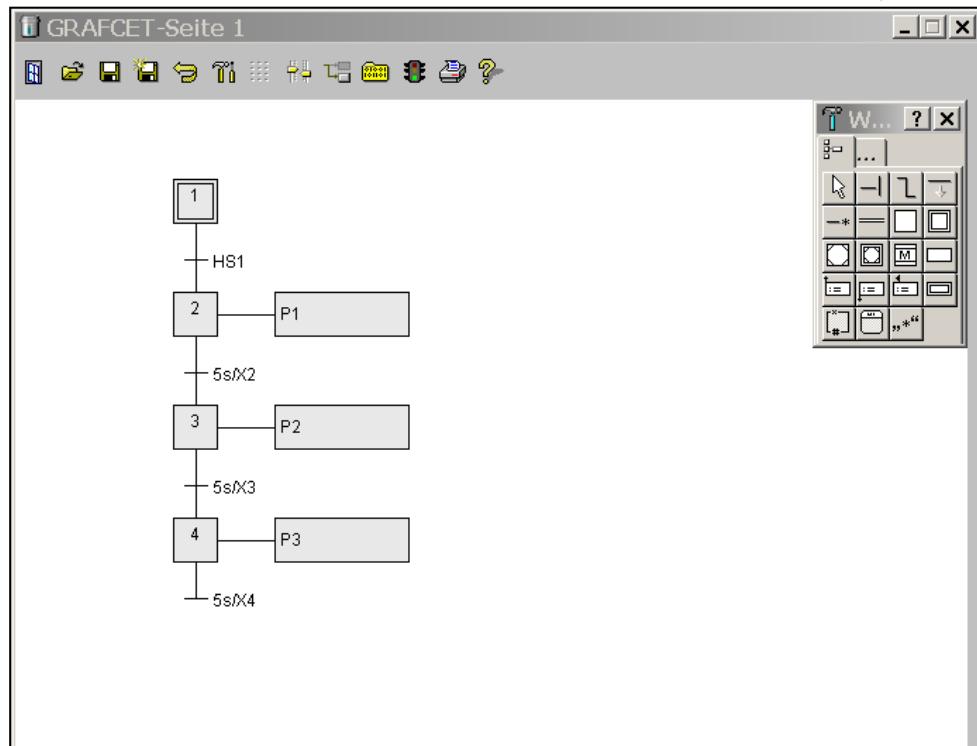


Fig. 8: Grafcet plan for lighting chain

By clicking the traffic light, the Grafcet page is checked and if no errors are detected, the page is executed (Grafcet view).

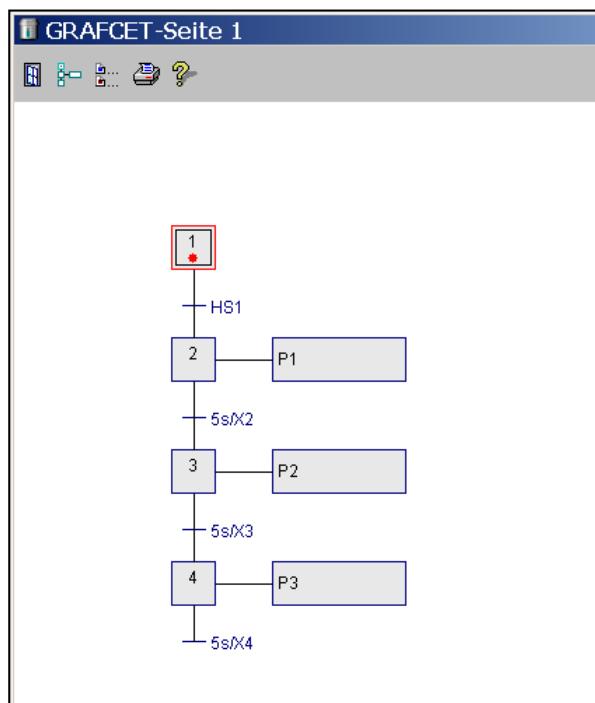


Fig. 9: Grafcet view for lighting chain

If you now press switch HS1 in the process screen, step 2 is set. The continuous action from step 2 sets the signal P1. That's why lamp 1 shines.

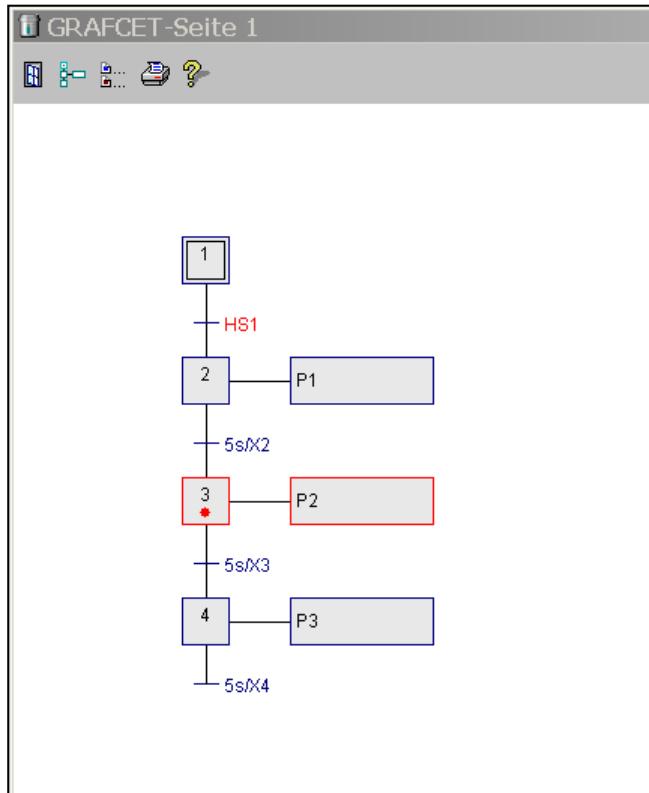


Fig. 10: Light chain (order of events)

The second transition $5s / X2$ is satisfied when step 2 was active for 5 seconds. Step 3 is set directly and lamp 2 is switched on. Lamp 1 turns off because it is linked to step 2 via the continuous action.

The process continues. If step 4 has been set for 5 seconds, the final transition is satisfied. Thereby, step 4 is reset and the lamp 3 is turned off.

To restart the process, the initial step must be initialized via Grafcet (the button in the upper button bar).

In order for the light chain to go through endlessly, the task needs to be extended.

TASK 1.1.2: Let the light chain go through until the switch HS1 is switched off again. The light chain should continue to the end and then stop.

You must extend the Grafcet plan for this task.

Close the Grafcet view by pressing the button close active sub window.

TASK 1.1.3: Start the light chain with an initial transition without using an initial step. The light chain should be terminated by a final transition. The initial transition is to be fulfilled by setting the switch HS1.

TASK 1.1.4: Allow the lamp P1 to flash exactly ten times for one second before the circuit is terminated. Use the free signal Parameter1. The HS4 button is used to start the circuit again and again when it has passed.

1.2 TASK LIGHT CHAIN

- TASK 1.2.1:** Expand the light chain so, that each lamp lights for a second in the order red, yellow, green, yellow if HS1 is pressed.
- TASK 1.2.2:** Extend the lighting chain so that by pushing switch HS2 all lamps turn off and the step sequence goes back to the initial step. (Tip: use Sub-Grafcet and forced control)

1.3 TASK – TRAFFIC LIGHT CONTROL

- TASK 1.3.1:** Create a traffic light control

Switch the traffic light circuit on or off with the HS1 switch. At the traffic light control, first set the red light for 10 seconds (set P1 to 1). Then the yellow light is switched on for 3 seconds (P2 to 1). The red and yellow lights must then be switched off at the same time and the green light should be switched on (P1, P2 to 0 and P3 to 1). The green light should remain on for 12 seconds. The green light then turns out while the yellow light is switched on for 4 seconds, before the cycle begins again with the red light.

- TASK 1.3.2:** The traffic light control of task 1.3.1 is to be expanded:

The traffic light cycle may only be started when the switch HS1 has been actuated. If the stop switch HS2 is pressed, the traffic light turns off immediately. Only when the switch HS2 is no longer pressed and the switch HS1 has been actuated, the traffic light circuit should restart.

- TASK 1.3.3** Flashing of the green light, when green phase is over:

In Austria the green lamp starts to flash when the green phase is over. Extend the circuit of task 1.3.2 so that the green lamp is on for 10s, then flashes for 5s before the yellow lamp is on (use *Inclusion Step*).

1.4 TASKS WITH SWITCHES AND PUSH BUTTONS

- TASK 1.4.1:** Try to turn on the *P1* lamp by pressing the button *HS4* and turn the lamp off by pressing the button again.
- TASK 1.4.2:** Create a Grafcet diagram which enables you to switch pumps *M1*, *M2*, *M3* and *M4* and heating rod *Q1* on and off using the switches / push buttons *HS1*, *HS2*, *HS3*, *HS4* and *HS5*.
- TASK 1.4.3:** Extend the manual control so that no overflow can occur, meaning pumps *M1* and *M2* are switched off when level sensor *B1* is exceeded. For pump *M3*, perform a dry-running protection. It may only run if level is not below sensor *B3*. Pump *M4* and the heating rod *Q1* may only be connected if the filling level is above *B2*.
- TASK 1.4.4:** On a second page, create a Grafcet chart that displays the fill level "Full" or "Empty" through lamps *P1* and *P2*. *P1* indicates empty state when fill level is below *B3*. If fill level is above *B1*, lamp *P2* should display "Full". Evaluate all three sensor conditions for both displays due to safety reasons.

TASK 1.4.5: Change the circuit, so that the lamps start flashing when "Blank" or "Full" is indicated.

1.5 OPERATION STORAGE TANK

TASK 1.5.1: Create a Grafcet diagram, which allows you to switch pumps M1 and M2 on and off using switches HS1 and HS2. Following automatic sequence is to be implemented for pump M3:

- If upper level switch B1 is exceeded, the pump is started with a control signal of 5% (FI103.y = 5)
- Every 5 seconds, the control signal should be increased by 5% until a maximum of 100% is reached
- Pump M3 is switched off when the lower level sensor B1 is underrun
- To test Grafcet diagram, turn on pumps M1 and M2 using switches HS1 and HS2.

TASK 1.5.2: To ensure that there is always enough water in the container, pumps M1 and M2 should continuously run when they have been enabled by switches HS1 or HS2 and filling level is below medium level switch B2.

If the level is between medium level switch B2 and upper level switch B1, only pump M1 should run. Pump M1 must be enabled by HS1.

Above level switch B1, none of the feed pumps M1 and M2 is allowed to run.

TASK 1.5.3: To conserve the pumps, they should not be switched on and off quickly.

When turned on, they must remain on for 5s before they can be turned off again. When turned off, they must remain off for 5s before they can be turned back on.

Expand the Grafcet plan accordingly.

TASK 1.5.4: In addition to the above circuit, pump 3 may only run when it has been enabled via switch HS3. If HS3 is not pressed, pump 3 is switched off and the Grafcet diagram goes into the basic position.

1.6 PRODUCTION MIXING REACTOR

Consider container B1 as a mixing reactor. Two components can be added via pumps 1 and 2. Pump 4 is used to mix the two components. The mixture can be heated with heating rod Q1. The end product is released with pump 3.

TASK 1.6.1: Create following production process for the mixing reactor:

- The production process may only be started if the filling level is below B3,
- Simultaneous start of pumps M1 and M2,
- If level switch B2 is reached, pump M1 is switched off and circulation pump M4 is switched on. Pump M2 should continue for 20s.
- After pump M2 has been stopped, heating rod Q1 is switched on for 40s.

- After heating rod Q1 is turned off, wait 30s before M3 starts emptying the tank.
- Pump M3 is switched on for emptying the tank. Control signal FI103.y of the pump is set to 100%.
- If level is below B3, circulation pump M4 is switched off and pump M3 is set to basic load (FI103.y = 0).
- The drainage pump M3 should continue to run for 3s before it is switched off.

Use parallel branching in Grafset for switching on and off the feed pumps or circulation pump.

TASK 1.6.2: Expand the flow as follows:

- Define the production process as a macro.
- The production process may only be started when HS1 switches from 0 to 1 (rising edge).
- If the tank is not empty, it should be emptied before the production process is started as a macro.
- In order to ensure pumps M3 and M4 are be switched off at start-up, they should be set to 0 in the initial step.

TASK 1.6.3: Extend the sequence by an emergency stop switch (HS3):

- HS3 must be 1 to start process.
- If HS3 is triggered (HS3 is 0) all pumps and the heating rod are switched off. The process should start again from the beginning. To start, HS1 must be pressed again (rising edge from 0 to 1)

Note: Use Sub-Grafset and the Forced Control.

2 KEYBOARD LAYOUT FOR GRAFCET - TERMS

Following keys are used for the Grafset terms:

- + Or operator
- * And operator
- ! Not operator
- ^ Raising edge
- \^ Falling edge
- [a comp b] Statement, e.g. [C>= 5]
- 0 False
- 1 True

Statements with analogue signals must be set explicitly in square brackets.

Example: [Fill level> 70] * !ValveA,

The term is 1 (true) if the analogue signal fill level has a value greater than 70 and the binary signal ValveA has the value 0

3 TASKS – CONTROL WITH LOGIC DIAGRAMS

3.1 COMMISSIONING OF THE PLANT WITH MANUAL CONTROL

The system is initially to be tested in manual operation in order to test the performance of the pumps. The hand valves of the feed pumps should be set differently for this purpose. Open hand valve of pump M1 almost fully and hand valve of pump M2 half. In the simulation, you can enter e.g. 75% and 60% in *View simulated LC2030*. You can also perform the tasks with the default setting for both pumps of 75%. The hand valve of drainage pump M3 should be fully open.

For switching the pumps on and off, a circuit according to task 3.1.1 is to be created.

TASK 3.1.1: Pump M1 should be switched on and off with switch HS1, pump M2 with HS2 and pump M3 with HS3.

TASK 3.1.2: Test the performance of the pumps in manual mode. To do this, fill the tank only with pump M1 or only with pump M2. Measure the required filling time and enter it into the table. Determine the pump flow rates from the data.

Pump	Delivery time for a container volume of 7,887 L	Pump flow rate
M1		
M2		

TASK 3.1.3: Switch on pump M3. Try to always keep a sufficient supply in the tank with the pumps M1 and M2. Check the change of level in the trend diagram. Observe the switching contacts and signals of the sensors LS1 to LS3. (Vary the control signal for pump3 FI103.y between 0% and 100% by using the slider beside the display).

3.2 DISPLAY OF EMPTY OR FULL WITH LIGHT DETECTORS / GATE CIRCUIT

Indicator light P1 and light P2 should indicate the "full" or "empty" condition of the tank. Indicator light P1 indicates empty state when level is below the lower sensor. If level is above upper sensor, light P2 indicates "full". Evaluate all three sensor conditions for both displays due to safety reasons.

TASK 3.2.1: Develop and test a lighting circuit as described above. Write down the corresponding function equations. Only gate circuits (AND, OR, NOT) with any number of inputs can be used for the control design.

TASK 3.2.2: Develop a circuit for the luminaires according to the following

SPECIFICATION:

LEVEL	Display by:
above B1	P_1 and P_2 lights
between B1 and B2	P_2 lights
between B2 and B3	P_1 lights
below B3	P_3 lights

3.3 DISPLAY OF A SENSOR ERROR / GATE WITH SIMPLIFICATION

In the event of a line break at the sensor connections, faulty displays and thus malfunctions of the pumps can occur. Unrealistic combinations of sensor signals indicate such disturbances and could be detected and displayed by monitoring circuits.

TASK 3.3.1: Enter in the following table all combinations of sensor signals. Under "Level", enter the state of the respective combination. Mark all unrealistic combinations as "Sensor Errors".

B3	B2	B1	Level	Sensor Error	P3

TASK 3.3.2: Develop and test a circuit which indicates all "sensor errors" by light P3. Check the circuit by simulating sensor errors.

TASK 3.3.3: Simplify the circuit if possible. Use e.g. a Karnaugh map.

Note: To switch pumps M1, M2, M3 via switches HS1, HS2, HS3 for testing the circuits, the circuitry required for this purpose has to be indicated in the upper part of the logic diagrams.

3.4 PUMP CONTROL GATES

The level-dependent control of the inflow quantity is to be effected automatically by means of a circuit. The conditions for the operation of pumps M1 and M2 are established in the following table:

Fill level	Running pumps
Above B1	none
Between B1 and B2	Pump M1
Between B2 and B3	Pump M2
Below B3	Pumps M1 and M2

Note: To test the following circuits, pump M3 must be switched on and off. Switch pump M3 on and off as described in section 3.3 using switch HS3. You can change the speed of pump M3 using the slider next to the display field.

TASK 3.4.1: Enter into the function table, for which sensor signals pumps M1 and M2 are switched on and write down the function equations.

B3	B2	B1	M1	M2

TASK 3.4.2: Develop the previously specified pump control. Take advantage of the possibilities of simplification and test the solution.

TASK 3.4.3: Test the circuits by switching on pump M3 via switch HS3 and then use the slider next to the flow indicator to vary the flow rate.

Since the filling level fluctuates, the level switches flicker at the corresponding filling levels. This results in a high switching frequency of the pumps. This is solved in a later task by the use of on / off delay timers.

TASK 3.4.4:

The developed pump control is later to be realized with ICs. To avoid having to use too many (and different) ICs, it is useful to engage only one type of gate (e.g., NAND's) in the circuit design. Draw the tested circuit so that only NANDs with 2 inputs (as in IC 7400) are used. Try to use as few ICs as possible.

3.5 CONTROL OF PUMP 3 VIA A PUSH BUTTON

Pump M3 should be switched on or off using push button HS5.

Develop a circuit or implement the circuit as specified in the solution. In order for the circuit to work, you must also use the on / off delay timer and the edge block (binary trigger block) for this task.

TASK 3.5.1: Develop a circuit with an RS (RS flip-flop), which allows you to switch pump M3 on and off using the button.

3.6 INSTRUCTIONS WITH NORMALLY CLOSED / NORMALLY OPEN CONTACT

There are 3 switches and 2 buttons available in the control panel. Pumps M1 and M2 are to be switched on and off via switches HS2 and HS3. Switch HS1 is used as an emergency stop switch.

Normally closed: NC

Normally open: NO

Operating element	function	switch	button	NC	NO
HS1	Emergency stop	X		X	
HS2	M1	X			X
HS3	M2	X			X
HS4			X		
HS5	M3		X		

These control elements are to be used with the level sensors for the control.

TASK 3.6.1:

Use control elements for the described tasks:

- If emergency stop switch is actuated, it locks and switches off all actuators.
- If no emergency stop occurs, the pumps can additionally be switched on manually using HS2 and HS3, in addition to automatic control.

Push button HS5 is used to switch pump M3 on and off for testing the circuit as in task 3.5.

Extend the circuit from task 3.4.2 according to the functions described above.

3.7 CONTROL WITH PUSH BUTTONS / INTRODUCTION RS-MEMORIES

The operation of the pump control is to be changed to pushbutton operation. The functions of the control elements are as follows.

Operating element	Function	Switch	Button	NC	NO
HS1	Emergency stop	X		X	
HS2	MS	X			X
HS3		X			X
HS4	Start		X		X
HS5	Stop		X		X

The operation part of the control and the pump control unit should be developed separately. Light P1 is to be used for this purpose. Light P1 indicates the state "System ON".

The main switch is labelled MS.

TASK 3.7.1:

The following functions are to be implemented with gates and RS memories:

- The system stays switched off without the main switch (MS) switched on.
- If the emergency stop switch is activated, the system also switched off.
- The system is only switched on when the start button is pressed while MS is active.
- The Stop button switches off the system at any time.

TASK 3.7.2: Check the logic diagram for operational safety:

- Is there a restart protection after a power failure?
- Is switching off the system (MS, Stop, Emergency Stop) guaranteed?
- How does the system respond to line breakage at the control elements?

TASK 3.7.3: Is there any need for changes to the controls?

TASK 3.7.4: Press switch HS3 as a stop button and use it as an NC contact. Change the circuit accordingly.

3.8 PUMP CONTROL WITH MEMORIES AND GATES

Switching pumps M1 and M2 on and off is done by setting and resetting RS memories. If the levels for both switching commands are different, a high switching frequency is avoided.

The pumps should be switched on and off according to the following description:

- If the tank is filled above the uppermost sensor, no pump is running.
- If the level falls below B2, M2 switches on.
- If the level falls below the lowest sensor, both pumps M1 and M2 are running.
- If the level rises above the medium sensor B2, pump M1 is switched off.

TASK 3.8.1: Enter all combinations of input signals into the function table. In columns M1 and M2, enter S (set) or R (reset) for each level switch combination.

B3	B2	B1	M1	M2

TASK 3.8.2: Develop and test the circuit.

3.9 ERROR MESSAGE WITH RECEIPT

In the event of a breakdown, the given circuit outputs an alarm signal via horn and / or indicator light.

The message can be "Acknowledged" with a button.

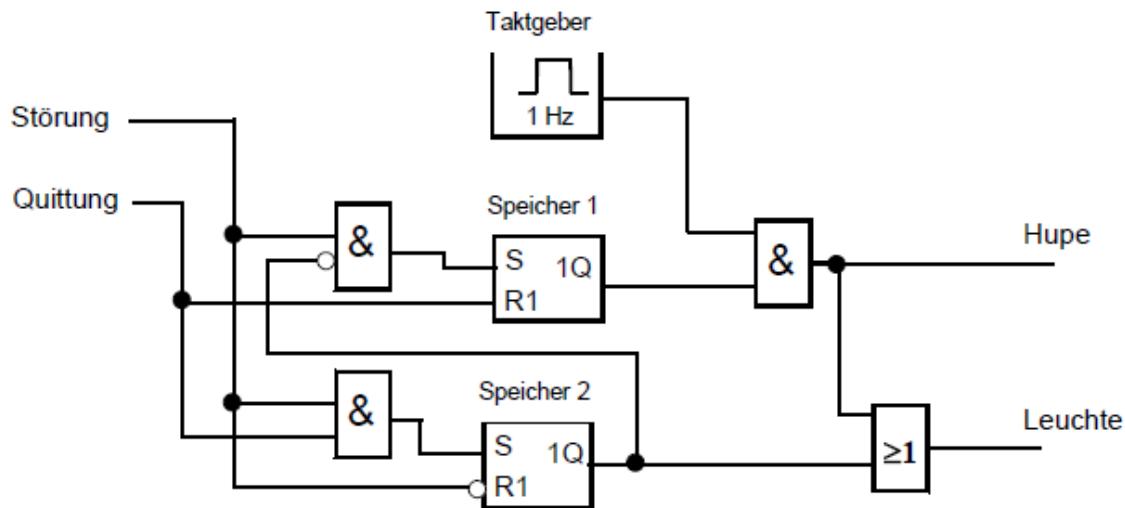


Fig. 11 Alarm signal via horn and / or indicator light.

TASK 2.9.1: Describe in the table below the effects on the two memories, the horn and the indicator, when

- An error message arrives (fault = "1"),
- This signal is terminated again (fault = "0") and
- Afterwards an acknowledgment is made (acknowledgment = "1")
- The error is present (fault = "1") and the acknowledgment is pressed (acknowledgment = "1")

Solution table:

	Memory 1	Memory 2	Horn	Indicator
Task a				
Task b				
Task c				
Task d				

TASK 3.9.2: Extend the circuit for signalling a sensor error by the function shown above with the following specifications:

- Acknowledgment should be possible via the button HS4.
- Use light P2 as the horn and light P3 as the indicator light.

Note: Use the light signal P1 as a marker to internally transmit the sensor error.

3.10 CONTROL WITH TIMER

To avoid load peaks by switching both pumps on at the same time, the control is to be extended by a time delay.

TASK 3.10.1: Since the M1 and M2 can be switched on at the same time, the switch-on signal for pump M1 is to be delayed by 5s by means of a timer. Modify the circuit developed in Exercise 2.8.2 according to these conditions.

TASK 3.10.2: The upper sensor limits the filling capacity of the container to approx. 80%. A time control should ensure that during the filling process pump P2 is switched after 8s delayed.

3.11 MIXED OPERATION WITH RS-STORES

The storage tank is to be used for the automatic filling and mixing of two liquids. The container is emptied afterwards. The following steps are to be carried out one after the other:

1. The container is filled up to sensor B2 via pump M1. Pump M1 should then be switched off.
2. Subsequently, the filling is continued through M2 and meanwhile pump M4 is switched on for mixing.
3. When level switch B1 is reached, pump M2 should still continue for 5s and pump M4 for 20 seconds.
4. When all pumps have been switched off, pump M3 should empty the tank.

The sequence should fulfil the following additional conditions:

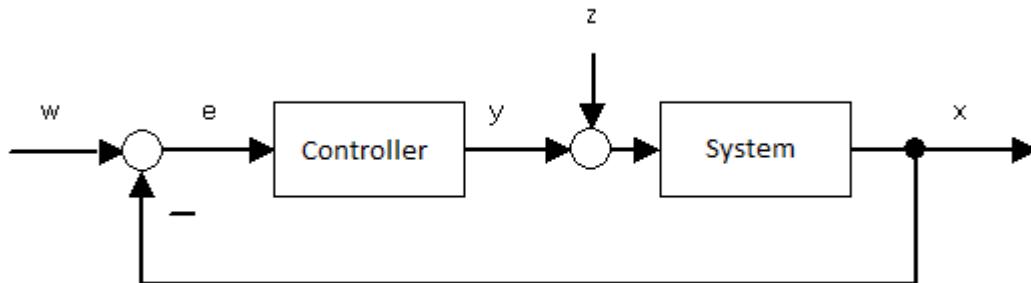
- The system can only be operated with the main switch HS (switch HS3) pressed.

- The emergency stop switch (switch HS1) switches off all steps and actuators.
- If the system is in the basic position (all pumps off, level below sensor B3), the start sequence can be started via START button (HS4). Make the basic setting visible by turning on the P3 lamp.
- The STOP switch (HS2) can reset the steps at any time and switch off the actuators.

TASK 3.10.1: Develop the above described control with RS memories.

4 TASKS CONTROL TECHNOLOGY

4.1 INTRODUCTION


With the LC2030 work station or with the simulated system you can carry out various types of different regulations

- Liquid level control (via inflow and outflow)
- Flow control (via inflow and outflow)
- Temperature control
- Pressure control

All of the following tasks refer to LIC101 level control (drain), flow control FIC103 (drain) and temperature control TIC102.

The goal in control technology is that a controller is able to bring the actual value to the desired value by adjusting an actuating signal after an acceptable time. The response to set point changes (guidance control) or to disturbance influences (disturbance value control) is distinguished here. In both cases, the controller attempts to bring the actual value back to the set point value.

The standard control loop looks as follows in the signal flow chart:

The actual value x is compared with the desired value w and the difference e is entered into the controller. The controller outputs a manipulated variable y to the system with which it attempts to influence the system so that the actual value is equal to the set point value after a settling phase. The occurrence of a disturbance z , of course, influences the system and thereby changes the actual value x . This also changes the difference between set point and actual value. The controller reacts and with the control signal influences the system.

In the normal case, the minus sign is next to the input of the actual value ($e = w - x$) during the set point / actual value comparison. However, it can also be at the input of the set point value ($e = x - w$). Where the minus sign is placed depends on whether the control signal is to be increased if the set point is greater than the actual value or vice versa. If the control signal y has to increase while the set point value is greater than the actual value, then the minus sign at the summation point is next to the input of the actual value,

Designations:

Reference variable (set point) w

The reference variable (set point) is the task variable to be followed by the control (the actual value). It is fed from the outside and is not affected by the control

Control variable (actual value) x

The control variable is the magnitude of the control path which is recorded for the purpose of the control and is compared with the reference variable (set point value). The aim of the control is that after a certain time (transient response), the control variable equals the value of the reference variable.

System deviation e

The system deviation is the difference between the reference variable and the control variable

$$e = w - x$$

Correcting variable y

The actuating signal is the output variable of the controller and input variable of the system (the process). It transmits the controlling effect and influences the process.

Disturbance variable z

A disturbance variable is an externally acting variable on the system. The control variable is thereby changed and the controller tries to correct the change.

There are two types of rules:

Guidance control

The reference variable (set point) is changed and the controller must attempt to bring the control variable (actual value) to the new reference value by influencing the control signal.

Disturbance control

The system and thus the control variable are changed by disturbances. The controller must try to correct the disturbance by changing the control signal so that after a certain time the control variable again equals the value of the reference variable.

4.2 RECORDING THE PUMP CURVE

The liquid level and the flow rate are controlled by the controllable pump M3. By examining the characteristics of the pump M3 one gets an impression of the behaviour of the system. It is also clear that the flow rate of the system is not only dependent on the speed of the pump, but also on the liquid level.

TASK 4.2.1: Record the characteristics for pump M3 by recording the flow rate from the flow meter and enter the values in the following table.

Speed	100%	80%	60%	40%	20%
Delivery height					
10 cm					
15 cm					
20 cm					
25 cm					
30 cm					
35 cm					

TASK 4.2.2: Develop a strategy to determine the flow rate from the change in the level and tank base area.

4.3 LIQUID LEVEL CONTROL LIC101

Go to Level Control page LIC101. Here you can operate the control in manual or automatic mode, select the controller type and set the controller parameters.

First, the control circuit is to be determined in principle.

TASK 4.3.1: Formulate what should be controlled, by what it is controlled and what disturbances take an influence.

TASK 4.3.2: For this control loop, determine the set point, the actual value, the actuating signal and the disturbance variable, and specify the respective units.

TASK 4.3.3: Create a flow chart (block structure) for the liquid level control.

TASK 4.3.4: Since the level signal fluctuates greatly when the feed pumps or the drain pump are running, it is useful to smooth the signal for the control. This is achieved by switching on the low-pass filter (corresponds to a Pt1 behaviour). Change the time constant of the low-pass filter and observe the behaviour of the smoothed signal. Describe the behaviour for different time constants.

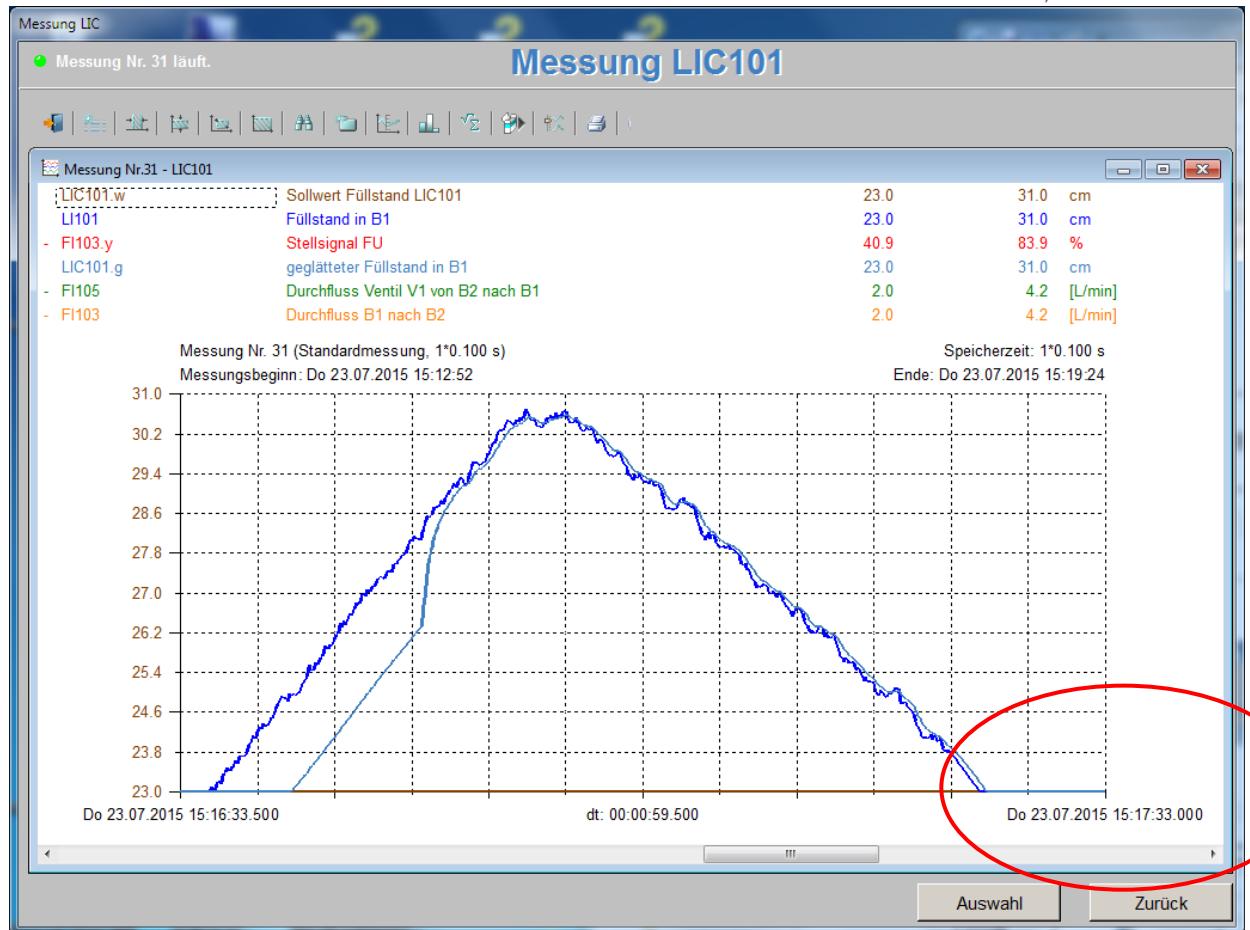


Fig. 12: Smoothed level signal with the time constant 5s and 0.5s

TASK 4.3.5: Set the circuit to manual control and switch on the two pumps M1 and M3. Set valve V1 to 100%. Specify a level set point (for example, 20cm) and try to bring the actual level to the desired level by adjusting the actuating signal y (speed of pump M3 from 0 - 100%).

NOTE: Turn on the low pass filter and set it to 2.2s. Try to correct the smoothed level signal. Start the measurement with the related button. You can then view the recorded measurements later using the *Measurement View*, and thus assess your ability to "play controller".

4.3.1 EXAMINATION OF LEVEL CONTROL LIC101 WITH THE P CONTROLLER

First, level control with P controller is to be investigated. To do this, turn on pumps M1 and M3 and set the controller to "Auto". The low-pass filter should be switched on and set to 2.2s.

In the simulated plant, the maximum flow rate of M1 should be set to 3.75 l / min and the one of pump M3 should be set to 5 l / min. Valve V1 behind pump M1 is opened to 80%.

The following tasks were performed with the simulated system and the above settings.

TASK 4.3.6: Set the level set point to 20cm and the gain of the P controller to 0.2. Wait until the smoothed actual level no longer changes. Describe the behaviour of the control.

TASK 4.3.7:

Set the gain of the P controller to 4 and observe the behaviour. Describe the behaviour of the control, in particular the relationship between the actual level and the desired level (actual value and set point value).

TASK 4.3.8: Increase the gain of the P controller to 6 and wait until the control loop has settled. Describe the behaviour of the control system, in particular the relationship between the actual level and the desired level. Then increase the gain to 25 and observe the control loop.

TASK 4.3.9: Turn off the low-pass filter with a gain of 25. Describe what happens.

4.3.2 EXAMINATION OF LEVEL CONTROL LIC101 WITH THE I CONTROLLER

Switch on the two pumps M1 and M3 again, select the I-controller and switch control to "Auto". The low-pass filter should be switched on and set to 2.2s.

In the simulated system, the maximum flow rate of M1 is set at 3.75 l / min and that of pump M3 is set to 5 l / min (*View simulated LC2030*). Valve V1 behind pump M1 is opened to 80%.

The following tasks were performed with the simulated system and the above settings.

TASK 4.3.10: Set the reset time of the I controller to 5s and the set point to 20cm. Observe the control loop and describe its behaviour.

TASK 4.3.11: Increase the integral time of the I-controller from 5s to 15s. Observe the control loop and describe its behaviour.

4.3.3 EXAMINATION OF THE LEVEL CONTROL LIC101 WITH PI CONTROLLER

Switch on the two pumps M1 and M3 again, select the PI controller and switch it to "Auto". The low-pass filter should be switched on and set to 2.2s.

In the simulated system, the maximum flow rate of M1 is set to 3.75 l / min and that of pump M3 is set to 5 l / min (*View simulated LC2030*). Valve V1 behind the pump M1 is opened to 80%.

The following tasks were performed with the simulated system and the above settings.

TASK 4.3.12: Set the gain to 2 and the reset time to 5s. The level set point is set to 20cm. Observe the control loop and describe its behaviour.

TASK 4.3.13: Increase the gain to 20, leave the reset time at 5s. Describe the behaviour of the control loop.

TASK 4.3.14: Set the reset time from 5s to 2s and observe the behaviour of the control circuit.

TASK 4.3.15: Try to find parameters by which the control loop is stable and the actual level quickly settles to the desired level by changing the gain and the reset time stepwise.

TASK 4.3.16: Use the parameters specified above to perform a set point jump from 20cm to 25cm. Observe and describe the behaviour of the control circuit to the set point jump (conduct behaviour).

TASK 4.3.17: Indicate a disturbance by setting valve V1 downstream of pump M1 from 80% to 50%. Observe and describe the behaviour of the control circuit for a disturbance value change (disturbance behaviour).

TASK 4.3.18: What happens when you turn off the low-pass filter? Observe and describe the behaviour of the control loop.

4.3.4 EXAMINATION OF LEVEL CONTROL LIC101 WITH PID CONTROLLER

Switch on the two pumps M1 and M3 again, select the PID controller and switch control to "Auto". The low-pass filter should be switched on and set to 2.2s.

In the simulated system, the maximum flow rate of M1 is set to 3.75 l / min and that of pump M3 is set to 5 l / min (*View simulated LC2030*). The valve V1 behind the pump M1 is opened to 80%.

The following tasks were performed with the simulated plant and the above settings.

TASK 4.3.19: Set the following parameters: Gain 2, reset time 5s, derivative time 1s. Switch on the 2 pumps and switch the control to automatic. The level set point is set to 20cm. Observe the control loop and describe its behaviour.

TASK 4.3.20: Try to stepwise change the gain, the reset time and the derivative time so that the control loop settles in an acceptable time, meaning that the actual level settles at the desired level.

TASK 4.3.21: Use the PID controller and the parameters set above to set the target value from 20cm to 25cm (guidance behaviour).

TASK 4.3.22: Wait until the control loop is steady. Then set a disturbance by changing the valve position from V1 from 80% to 50% (malfunction). Describe the behaviour of the control loop.

TASK 4.3.23: Describe what happens when you switch off the low-pass filter in the above scheme.

4.3.5 EXAMINATION OF LEVEL CONTROL LIC101 WITH TWO POSITION CONTROLLER

Switch back on the two pumps M1 and M3, select the two position controller and switch control to "Auto". The low-pass filter should be switched on and set to 2.2s.

In the simulated system, the maximum flow rate of M1 is set to 3.75 l / min and that of pump M3 is set to 5 l / min (*View simulated LC2030*). Valve V1 behind pump M1 is opened to 80%.

The following task was performed with the simulated plant and the above settings.

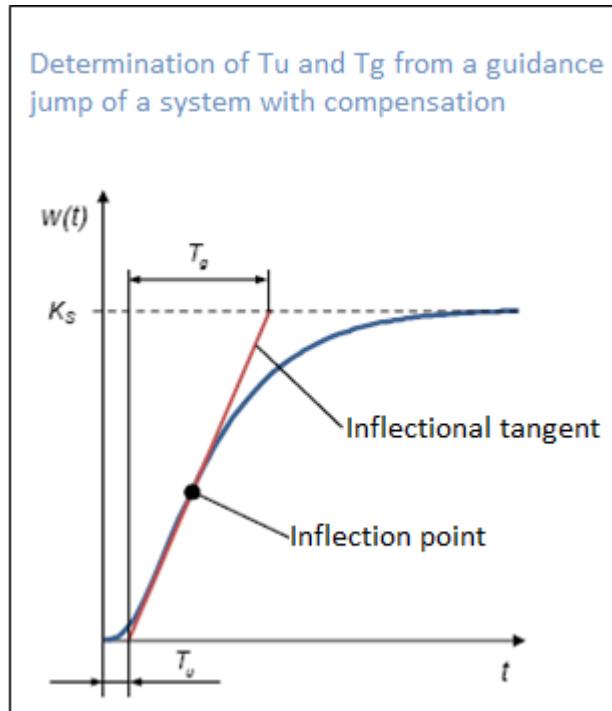
TASK 4.3.23: Follow the loop and describe its behaviour.

4.3.6 CONTROLLER ADJUSTMENT METHODS

In addition to the problem of selecting the appropriate controller for the control loop, control technology also has the problem of finding suitable controller parameters for the selected controller.

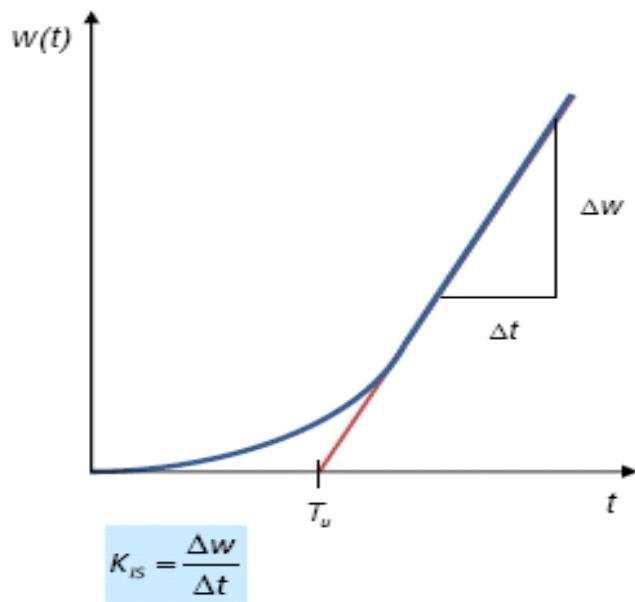
There are various control setting methods in the literature which support the user in the selection of the controller parameters. In these methods, the control system is examined and, depending on the behaviour of the control system, controller parameters are proposed. These methods are based on empirical studies. The suggested parameters are therefore not necessarily the optimal parameters. Often, however, these are parameters with which the control loop can be operated well in practice.

Some known controller adjustment methods are:


- Ziegler/Nichols I and II
- Chien/Hrones/Reswick
- T-Sum-Rule according to Kuhn
- Oppelt
- Method of maximum rate of rise (For temperature systems according to Müller)
- Setting rules of thumb

In the following, investigations are carried out using the regulator rules according to Chien / Hrones / Reswick and the rules of thumb.

4.3.7 METHOD ACCORDING TO CHIEN/HRONES/RESWICK


In the process of Chien / Hrones / Reswick, the step response is examined for a set point jump (unit jump) of the system. For this purpose, your control loop must be in a stable operating point. You must set the controller to "Manual" and the actuating signal and the control variable must not change. Provide a jump-like change of the control signal by 1 and watch the behaviour of the system.

A system with compensation has approximately the following behaviour on a unit jump of the actuating signal (sudden change of the control signal by 1):

You can use this step response to determine the parameters K_s , T_g and T_u as shown in the figure above. The change in the control path K_s results from the sudden change of the control signal by 1. If you make a larger manipulated variable change, you must divide the resulting gain value of the path by changing the manipulated value so that you get K_s .

If you have a system without compensation, the following behaviour will result in a unit jump of the control signal:

Here you can determine K_{is} as the slope of the tangent and T_u as the intersection of the tangent with the time axis. From K_{is} , calculate the time constant T_i by $T_i = 1 / K_{is}$.

Variables:

T_u	Period of delay
T_g	Recovery time of the controlled system
K_s	Transfer coefficient of the control section with compensation
K_{is}	Transfer coefficient of the control loop without compensation

The controller parameters are determined from the setting table according to Chien / Hrones / Reswick:

Controller	Quality criteria				
	Overshoot of 20% to opposite site		Aperiodic control behaviour		
	disturbance	guidance	disturbance	guidance	
P	$K_p \approx \frac{0,7}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,7}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,3}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,3}{K_s} \cdot \frac{T_g}{T_u}$	
PI	$K_p \approx \frac{0,7}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,6}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,6}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,35}{K_s} \cdot \frac{T_g}{T_u}$	
	$T_n \approx 2,3 \cdot T_u$	$T_n \approx T_g$	$T_n \approx 4 \cdot T_u$	$T_n \approx 1,2 \cdot T_g$	
PID	$K_p \approx \frac{1,2}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,95}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,95}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,6}{K_s} \cdot \frac{T_g}{T_u}$	
	$T_n \approx 2 \cdot T_u$	$T_n \approx 1,35 \cdot T_g$	$T_n \approx 2,4 \cdot T_u$	$T_n \approx T_g$	
	$T_v \approx 0,42 \cdot T_u$	$T_v \approx 0,47 \cdot T_u$	$T_v \approx 0,42 \cdot T_u$	$T_v \approx 0,5 \cdot T_u$	

For systems without compensation instead of $\frac{T_g}{K_s \cdot T_u}$ use $\frac{1}{K_{is} \cdot T_u}$

[The table has been adopted from: E. Samal, Ground plan of practical control engineering, Oldenbourg]

If you have a system without compensation, you must use the expression $1 / (K_{is} * T_u)$ in the table instead of the expression $T_g / (K_s * T_u)$ and replace the time constant T_g with $T_i = 1 / K_{is}$.

4.3.8 CONTROLLER SETTINGS OF THE FILLING LEVEL CONTROL LIC101 ACCORDING TO CHIEN/HRONES/RESWICK

The level system is a system without compensation. In order to be able to switch on a set point jump, the system must be in a stable operating point. For operating point, select. 20 cm.

To get a stable system (i.e. control variable x and the control signal y do not change any more), the inflow must be equal to the outflow. Since it will be very difficult to manually adjust the control signal by keeping

the level at 20cm with a constant control signal, you can select the PI controller and try to keep the level constantly at 20cm after a settling phase. Finally the control signal must not fluctuate anymore.

The following investigations were carried out with the simulated plant and the above settings.

For this experiment, only switch on pump M1 and pump M3 and set valve V1 to 100%. The maximum flow rate of M1 should be set to 3.75 l / min and that of pump M3 should be set to 5 l / min (*View simulated LC2030*).

Then switch the controller to manual and give a manipulated value jump of e.g. 20% (a jump from 75% to 55% in Fig. 70).

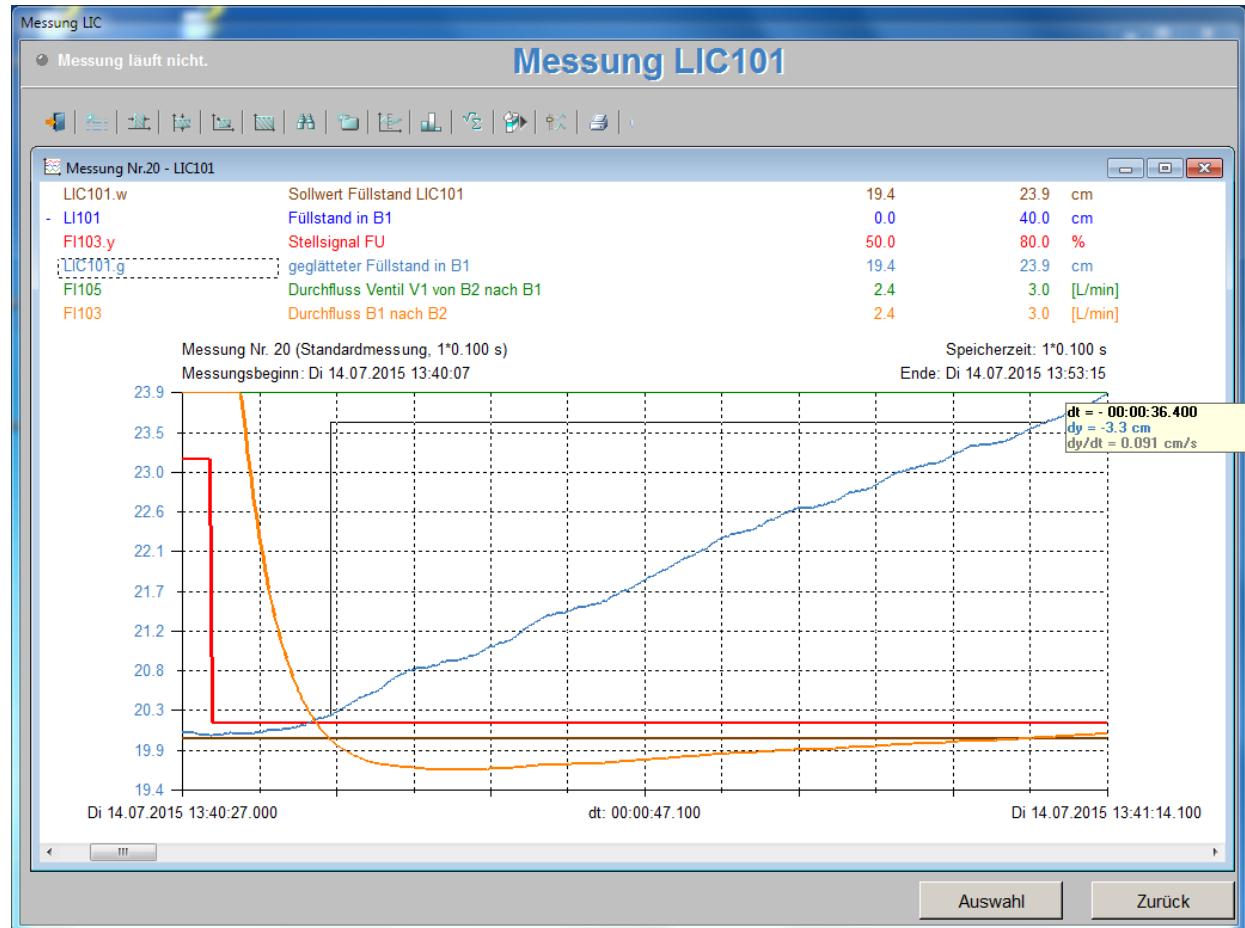


Fig. 13: Actuating variable jump from 75% to 55%

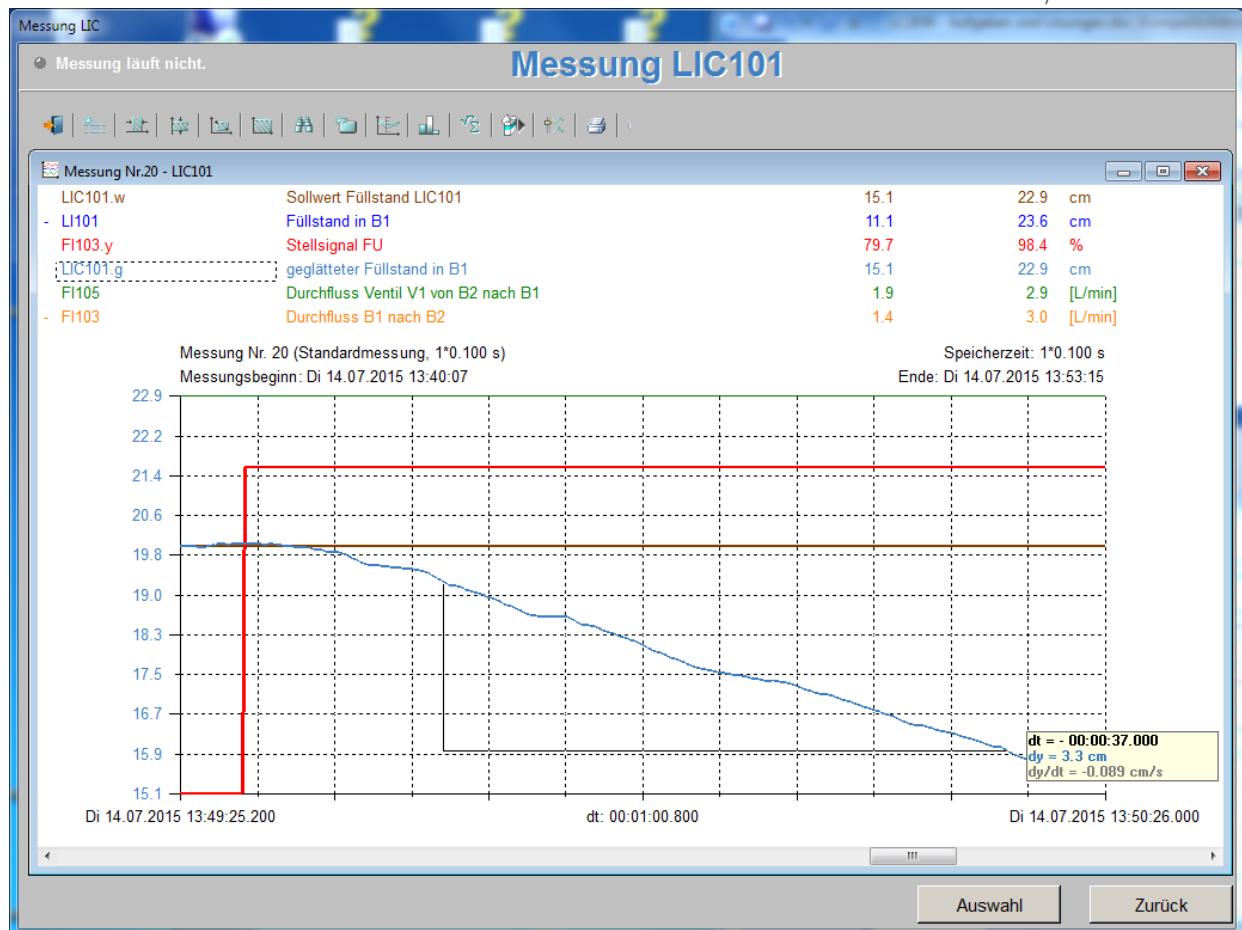


Fig. 14: Step response to a actuating value jump from 75% to 95%

- TASK 4.3.24: Determine T_u for both step responses and take the average to calculate K_i and T_i .
- TASK 4.3.25 Calculate controller parameters for guidance control with PI-controller from the table with 20% overshoot.
- TASK 4.3.26: Calculate controller parameters for guidance control with PI-controller without overshoot.
- TASK 4.3.27: Calculate controller parameters for disturbance control with PI controller with 20% overshoot.
- TASK 4.3.28: Calculate controller parameters for disturbance control with PID controller from the table without overshoot

4.3.9 CONTROLLER SETTINGS ACCORDING TO RULE OF THUMB FOR SYSTEMS WITHOUT BALANCING

The following rules of thumb were taken from the book by Josef Uphaus, *Grundlagen der Regelungstechnik*, Dümmler Verlag.

Controller	K _v	T _n	T _v
P	$0,5 * 1 / (K_i * T_u)$		
PI	$0,42 * 1 / (K_i * T_u)$	$5,8 * T_u$	
PID	$0,4 * 1 / (K_i * T_u)$	$3,2 * T_u$	$0,8 * T_u$

TASK 4.3.28 Calculate controller parameters for disturbance behaviour from above table.

4.4 FLOW CONTROL FIC103

Go to the *Flow Rate Control FIC103*. Here, you have the options of operating the controller in manual or automatic mode, selecting the controller type and setting the controller parameters.

The following tasks were performed with the simulated system. In the simulated system, the maximum flow rate of M1 is set to 3.75 l / min and that of pump M3 is set to 5 l / min (*View simulated LC2030*).

First, the control circuit is to be determined in principle.

TASK 4.4.1: Formulate what should be controlled, by what it is controlled and what disturbances take an influence.

TASK 4.4.2: For this control loop, determine the set point, the actual value, the actuating signal (manipulated variable) and the disturbance variables, and specify the respective units.

TASK 4.4.3: Create a flow chart (block structure) for the flow control.

TASK 4.4.4: In flow control the measuring signal (actual flow) can also be smoothed. This is achieved by switching on the low-pass filter (corresponds to a Pt1 behaviour). Change the time constant of the low-pass filter and observe the behaviour of the smoothed signal. Describe the behaviour of different time constants.

TASK 4.4.5: Fill the tank up to the maximum with the pumps M1 and M2. Turn off the two pumps. Set control signal y to 75% and switch on pump M3. Describe the behaviour.

- TASK 4.4.6:** Set the control circuit to manual and switch on the three pumps M1, M2, and M3. Specify a desired flow rate (for example 3 l / min) and try to manually adjust the actual flow to the set flow by adjusting the control signal y (speed of pump M3 from 0 - 100%).

NOTE: Turn on the low pass filter and set it to 0.5s. Try to control the smoothed flow signal. Switch on the measurement via *Start measurement*. You can then view the recorded measured values later using the *Measurement View*, and thus assess your ability to "play controller".

4.4.1 INVESTIGATION OF FLOW CONTROL FIC103 WITH P-CONTROLLER

First, the flow control with the P controller is to be investigated. Switch on the pumps M1 and M2 and fill the tank up to the overflow. Ensure that during the following tests inflow is greater than outflow. This means that you are in a defined operating point (maximum level of the container, overflow).

Set the low-pass filter to 0.5s. Select the P controller, set the set point to 3 l / min, turn on pump M3 and set the control to Auto.

The following tasks were performed with the simulated system. In the simulated plant, the maximum flow rate of M1 was set to 3.75 l / min and that of pump M3 to 5 l / min (*View simulated LC2030*).

- TASK 4.4.7:** Set the set point to 3 l / min and the gain of the P controller to 5. Observe the behaviour and describe it. Consider, in particular, the relationship between actual flow and set point flow (actual value and set point).

- TASK 4.4.8:** Increase the gain of the P controller by 10, and observe the behaviour of the control loop. Describe the behaviour of the control, in particular the relationship between the actual flow and the desired flow.

4.4.2 INVESTIGATION OF FLOW CONTROL FIC103 WITH I CONTROLLER

Switch on the three pumps again, select the I controller and switch it to "Auto". The low-pass filter should be switched on and set to 0.5s.

The following tasks were performed with the simulated plant and the above settings.

- TASK 4.4.9:** Set the reset time of the I controller to 1s and the set point flow to 3 l / min. Observe the control loop and describe its behaviour.

- TASK 4.4.10:** Increase the reset time of the I-controller step by step and adjust the set point every time between 3 l / min and 2.5 l / min. Observe the control loop and describe its behaviour.

4.4.3 EXAMINATION OF THE FLOW CONTROL WITH THE PI CONTROLLER

Switch on the three pumps again, select the PI controller and switch it to "Auto". The low-pass filter should be switched on and set to 0.5s.

The following tasks were performed with the simulated plant and the above settings.

- TASK 4.4.11:** Set a gain of 15 and a reset time of 4s. The desired flow rate is set to 1l/min. Wait until the control loop is steady. Then enter a set point jump from 1l/min to 3l/min. Observe the control loop and describe its behaviour.
- TASK 4.4.12:** Increase the gain to 30, leave the reset time at 4s. Describe the behaviour of the control loop.
- TASK 4.4.13:** Try to find parameters by stepwise changing the gain and the reset time, with which the control loop remains stable and the actual flow rate meets as quickly as possible to the desired flow rate. Provide a set point jump from 1 to 3 for each attempt.
- TASK 4.4.14:** Let the control loop settle to 1l/min. Set as parameter 35 for gain and 2 for reset time. Specify a set point jump from 1 l / min to 3 l / min. Observe and describe the behaviour of the control loop to the set point jump (guidance behaviour).
- TASK 4.4.15:** Indicate a disturbance by setting the manual valve behind the M3 pump to 80%. Observe and describe the behaviour of the control loop for a disturbance value jump (disturbance behaviour).

4.4.4 EXAMINATION OF FLOW CONTROL FIC103 WITH PID CONTROLLER

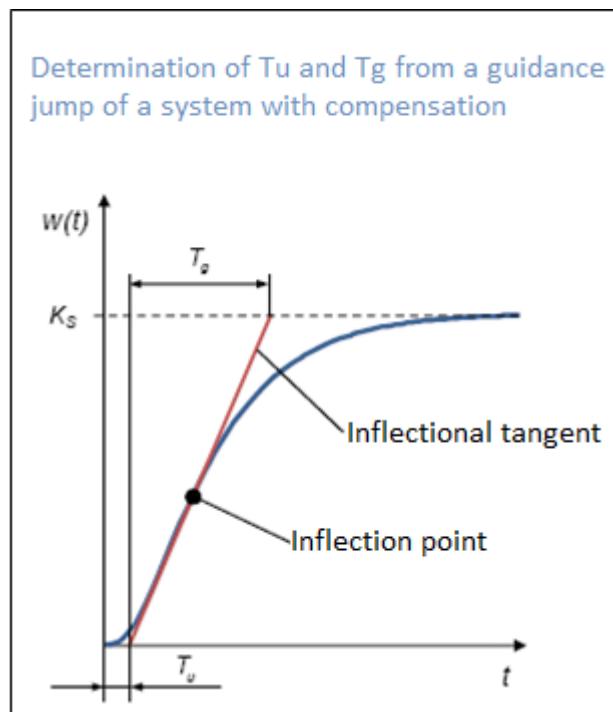
Switch on the three pumps again, select the PID controller and switch it to "Auto". The low-pass filter should be switched on and set to 0.5s.

The following tasks were performed with the simulated plant and the above settings.

- TASK 4.4.16:** Set the following parameters: Gain = 10, reset time = 5s, derivative time = 1s and as set point 2.5 l / min. Set the set point to 1 l / min. Wait until the system is steady. Change the set point from 1 l / min to 3.0 l / min. Observe the control loop and describe its behaviour.
- TASK 4.4.17:** Determine the parameters by stepwise changing gain, reset time and derivative time so that the control loop settles as quickly as possible.
- TASK 4.4.18:** Wait until the control loop has settled at 3.0 l / min with the above parameters. Then switch on a disturbance by adjusting the hand valve behind pump M3 to 80% (disturbance). Describe the behaviour of the control loop.

4.4.5 EXAMINATION FLOW CONTROL FIC103 WITH TWO POSITION CONTROLLER

Switch back on the three pumps, select the two position controller and switch it to Auto. The low-pass filter should be switched on and set to 0.5s.


The following tasks were performed with the simulated plant and the above settings.

TASK 4.3.21: Select 0.2 as hysteresis for the two position controller. Observe the control loop and describe its behaviour.

4.4.6 PROCEDURE ACCORDING TO CHIEN / HRONES / RESWICK FOR CONTROLLED SYSTEMS WITH COMPENSATION

In the process of Chien / Hrones / Reswick, the step response is examined for a set point jump (unit jump) of the system. For this purpose, your control loop must be in a stable operating point. You must set the controller to "Manual" and the actuating signal and the control variable must not change. Provide a jump-like change of the control signal by 1 and watch the behaviour of the system.

A system with compensation has approximately the following behaviour on a unit jump of the actuating signal (sudden change of the control signal by 1):

You can use this step response to determine the parameters K_s , T_g and T_u as shown in the figure above. The change in the control path K_s results from the sudden change of the control signal by 1. If you make a larger

manipulated variable change, you must divide the resulting gain value of the path by changing the manipulated value so that you get K_s .

It means:

T_u Effective dead time

T_g Compensation time of the control system

K_s Transfer coefficient of the control system with compensation

The controller parameters can then be calculated from the setting table according to Chien / Hrones / Reswick:

Controller	Quality criteria				
	Overshoot of 20% to opposite site		Aperiodic control behaviour		
	disturbance	guidance	disturbance	guidance	
P	$K_p \approx \frac{0,7}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,7}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,3}{K_s} \cdot \frac{T_g}{T_u}$	$K_p \approx \frac{0,3}{K_s} \cdot \frac{T_g}{T_u}$	
PI	$K_p \approx \frac{0,7}{K_s} \cdot \frac{T_g}{T_u}$ $T_n \approx 2,3 \cdot T_u$	$K_p \approx \frac{0,6}{K_s} \cdot \frac{T_g}{T_u}$ $T_n \approx T_g$	$K_p \approx \frac{0,6}{K_s} \cdot \frac{T_g}{T_u}$ $T_n \approx 4 \cdot T_u$	$K_p \approx \frac{0,35}{K_s} \cdot \frac{T_g}{T_u}$ $T_n \approx 1,2 \cdot T_g$	
PID	$K_p \approx \frac{1,2}{K_s} \cdot \frac{T_g}{T_u}$ $T_n \approx 2 \cdot T_u$ $T_v \approx 0,42 \cdot T_u$	$K_p \approx \frac{0,95}{K_s} \cdot \frac{T_g}{T_u}$ $T_n \approx 1,35 \cdot T_g$ $T_v \approx 0,47 \cdot T_u$	$K_p \approx \frac{0,95}{K_s} \cdot \frac{T_g}{T_u}$ $T_n \approx 2,4 \cdot T_u$ $T_v \approx 0,42 \cdot T_u$	$K_p \approx \frac{0,6}{K_s} \cdot \frac{T_g}{T_u}$ $T_n \approx T_g$ $T_v \approx 0,5 \cdot T_u$	

For systems without compensation instead of $\frac{T_g}{K_s \cdot T_u}$ use $\frac{1}{K_{IS} \cdot T_u}$

[The table was adopted from: E. Samal, Grundriss der praktische Regelungstechnik, Oldenbourg]

4.4.7 ADJUSTMENT OF FLOW CONTROL FIC103 ACCORDING TO CHIEN / HRONES / RESWICK

The flow control system is a system with compensation. In order for you to switch on a control signal jump, the track must be in a stable operating point. For operating point, select e.g. 2.5 l / min.

Allow the tank to overflow so that you always have the same conditions.

Wait until the control loop is steady. Switch the controller to manual and set a value of 10% (a jump from 48.9% to 58.9% in Fig.).

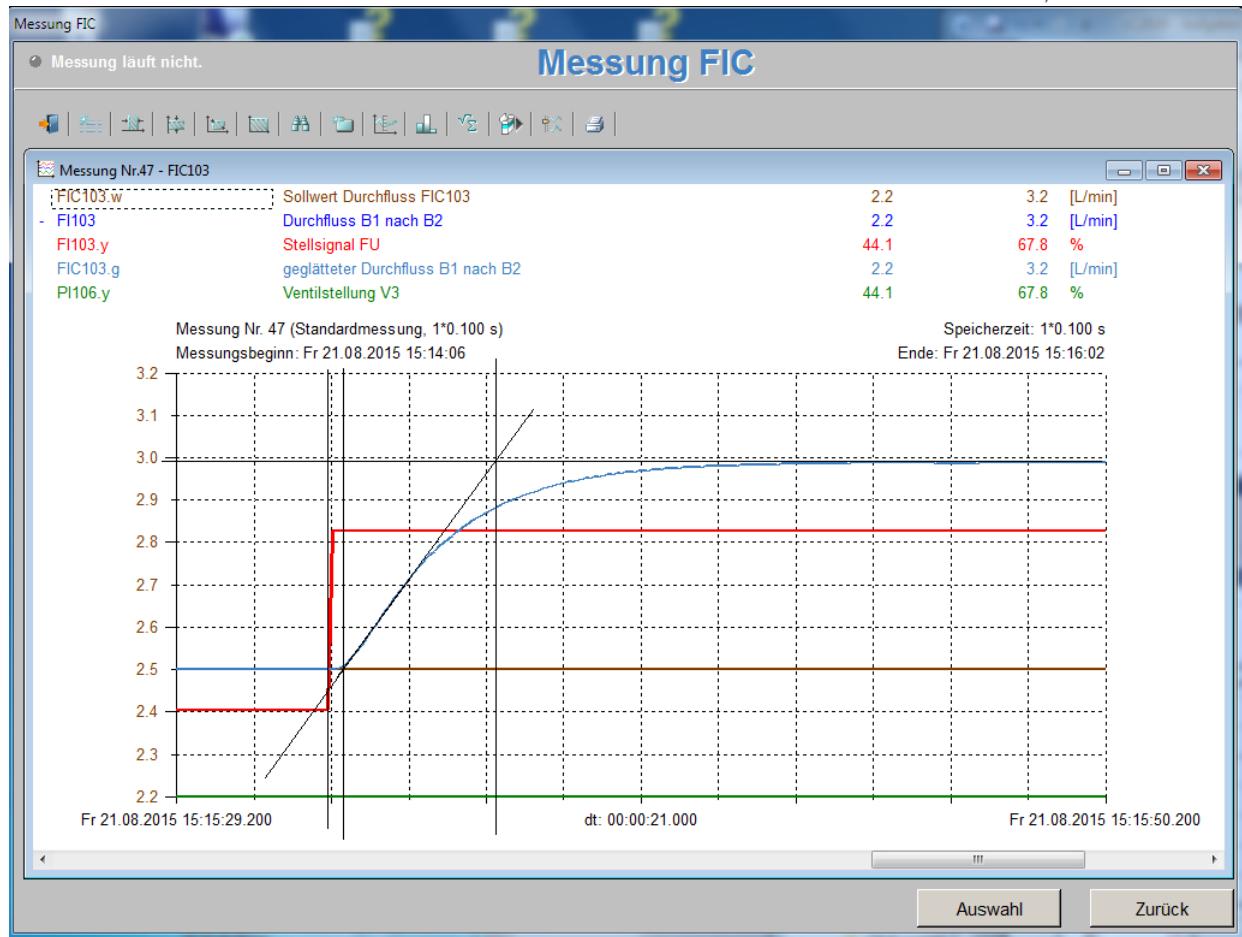


Fig.15: Jump response to a change in the value from 48.9% to 58.9%

TASK 4.4.19 Determine T_u , T_g and K_s .

TASK 4.4.20 Calculate controller parameters for guidance control from the table with 20% overshoot.

TASK 4.4.21 Calculate controller parameters for guidance control from the table without overshoot.

TASK 4.4.22 Calculate controller parameters for disturbance control from the table with 20% overshoot.

TASK 4.4.23 Calculate controller parameters for disturbance control from the table without overshoot.

The controller parameters for the disturbance and guidance behaviour are different. When designing a control circuit, it must be determined whether the control circuit is primarily to react to set point or to disturbance value changes.

If both the set point changes and the disturbances occur during control, a compromise must be found for the controller parameters.

TASK 4.4.24 Calculate controller parameters for PI controller which are suitable for guidance and disturbance control. Apply a step from 2.5l/min to 3l/min and a disturbance (manual valve from 100% to 80%).

TASK 4.4.25 Calculate controller parameters for guidance with PID controller control from the table without overshoot.

4.5 TEMPERATURE CONTROL TIC102

Go to *Temperature Control*. Here, you have the options of operating the control in manual and automatic mode, selecting the controller type and setting the controller parameters. P, PI, PID and two position controller are available as controllers.

The temperature is controlled by means of a heating rod. The heating power of the heating rod cannot be adjusted analogously. It can only be switched on or off. If the control is to be performed analogously, a pulse-width-modulated control must be implemented or a two position control can be used.

The heating rod is locked so that it can only be switched on when the container is at least half full (level switch *B2* reached).

A time interval (cycle time) is defined for the pulse width modulated control in which the heating rod is switched on or off as a function of the control signal of the controller.

If you set the temperature control to Auto, the heating rod is switched on and off as follows: Depending on the control signal (0-100%), the heating rod is switched on and off proportionally in the specified time interval of the pulse width modulation (cycle time).

If pump *M4* is switched on during the simulation, the simulation behaves as if there is a cooler in the circulating line. The temperature of the water cools down faster with pump *M4* switched on.

The following tasks were performed with the simulated system.

The level was 20 cm and pumps *M1*, *M2* and *M3* were switched off.

First, the control circuit is to be determined in principle.

TASK 4.5.1: Formulate what should be controlled, by what it is controlled and what disturbances take an influence.

TASK 4.5.2: For this control loop, determine the set point, the actual value, the actuating signal (manipulated variable) and the disturbance variable, and specify the respective units.

TASK 4.5.3: Create a signal flow plan (block structure) for temperature control.

TASK 4.5.6: Set the control loop to manual and try to reach a given temperature set point by adjusting the control signal *y*.

4.5.1 EXAMINATION TEMPERATURE CONTROL TIC102 WITH P CONTROLLER

Examine the temperature control using the P controller.

The following tasks were performed with the simulated plant and the above settings. The circulating pump *M4* is not switched on. The time for pulse width modulation is 10 sec. The level should be at 20cm.

TASK 4.5.7: Choose manual regulation. The actual temperature is 20 ° C. and the desired temperature is set to 30 ° C. Set the gain of the P controller to 5 and switch the

control to Auto. Observe the behaviour. Describe the behaviour of the control.

Consider, in particular, the relationship between actual temperature and temperature set point (actual value and set point).

- TASK 4.5.8:** Increase the gain of the P controller to 20 and to 50 and observe the behaviour. Describe the behaviour of the control. Consider, in particular, the relationship between actual temperature and set point temperature (actual value and set point).

4.5.2 EXAMINATION OF THE TEMPERATURE CONTROL WITH THE PI CONTROLLER

Wait until the temperature in the container is constant (e.g., 20 °C). If you are working with the simulated system, you can use *View simulated LC2030* and *Parameters* to *Set start* and bring the simulated system to a defined initial state with a temperature in the tank of 20 °C.

Pump M4 is switched on for the following tasks and the cooling capacity is set to 50%. The level should be set to 20cm.

- TASK 4.5.9:** Set a gain of 50 and a reset time of 10s. Increase the set point from 20 °C to 30 °C. Observe the control loop and describe its behaviour.

- TASK 4.5.10:** Change the parameters of the PI controller and try to get to the set point faster without overshooting.

4.5.3 EXAMINATION OF TEMPERATURE CONTROL TIC102 WITH PID CONTROLLER

Wait until the temperature in the tank is constant (e.g., 20 °C). If you are working with the simulated system, you can use *View simulated LC2030* and *Parameters* to *Set start* and bring the simulated system to a defined initial state with a temperature in the tank of 20 °C.

Pump M4 is switched on for the following tasks and the cooling capacity is set to 50%. The level should be set to 20cm.

- TASK 4.5.11:** Set the following parameters: Gain = 50, reset time = 10s, derivative time = 2s. Provide a set point jump from 20 °C to 30 °C. Observe the control loop and describe its behaviour.

- TASK 4.5.12:** Change the parameters of the PID controller and try to reach the set point quickly and without overloading with the actual value.

4.5.4 EXAMINATION OF TEMPERATURE CONTROL TIC102 WITH TWO POSITION-CONTROLLER

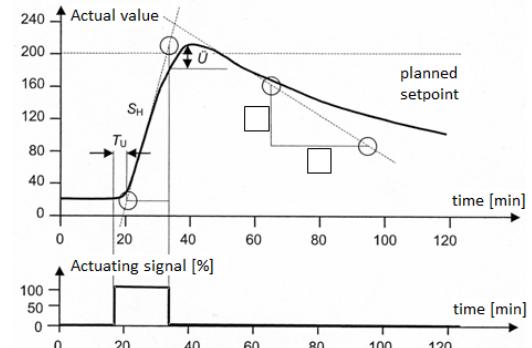
Wait until the temperature in the container is constant (e.g., 20 °C). If you are working with the simulated system, you can simulate the LC2030 view and set the parameters by pressing start values to bring the simulated system to a defined initial state with the temperature in the vessel 20 °C.

The pump M4 is not switched on in the following task. The level should be set to 20cm .

- TASK 4.5.13:** Choose a hysteresis of 0,2 for the two-position-controller and enter a set point jump from 20 °C to 30 °C. Observe the control loop and describe its behaviour.

4.5.5 CONTROLLER SETTING PROCEDURE FOR TEMPERATURE SYSTEMS ACCORDING TO MÜLLER

In the method of Müller, the step response on a control value jump is examined. For this purpose, your control loop must be in a stable operating point. You must set the controller to manual mode and the actuating signal and the control variable must not change. Provide a sudden change of the control signal and observe the behaviour of the temperature range.


Circulating pump M4 is switched off.

To determine the controller parameters, delay time T_u and slope S_h are required.

Method of Maximum Increase Speed (for Temperature Systems (acc. Müller))

Approach: test function = square function

- I. Initial temperature of the system
Room temperature
- II. Actuating jump 100%
- III. Wait until temperature is app. 10% below operating point
- IV. Reduction of actuating signal to 0%
- V. Determination of slope S_h from $S_h = \Delta x / \Delta t$

- VI. Determination of controller parameters according to following table:

Controller type	K_{PR}	T_N	T_V
P	$100/(S_h \cdot T_u)$		
PI	$83/(S_h \cdot T_u)$	$4 \cdot T_u$ [s]	
PD	$120/(S_h \cdot T_u)$		$0,2 \cdot T_u$ [s]
PID	$220/(S_h \cdot T_u)$	$2 \cdot T_u$ [s]	$0,4 \cdot T_u$ [s]

Fig.16 Method of the maximum increase speed according to Müller (from a course "Regelungstechnik" by Prof. Hass, Hochschule Bremen)

The controller parameters can be calculated from the setting table according to Müller using T_u and S_h .

For our range, the following behaviour (Fig. 107) results in a actuating value jump.

TASK 4.5.14 Calculate T_u and S_h .

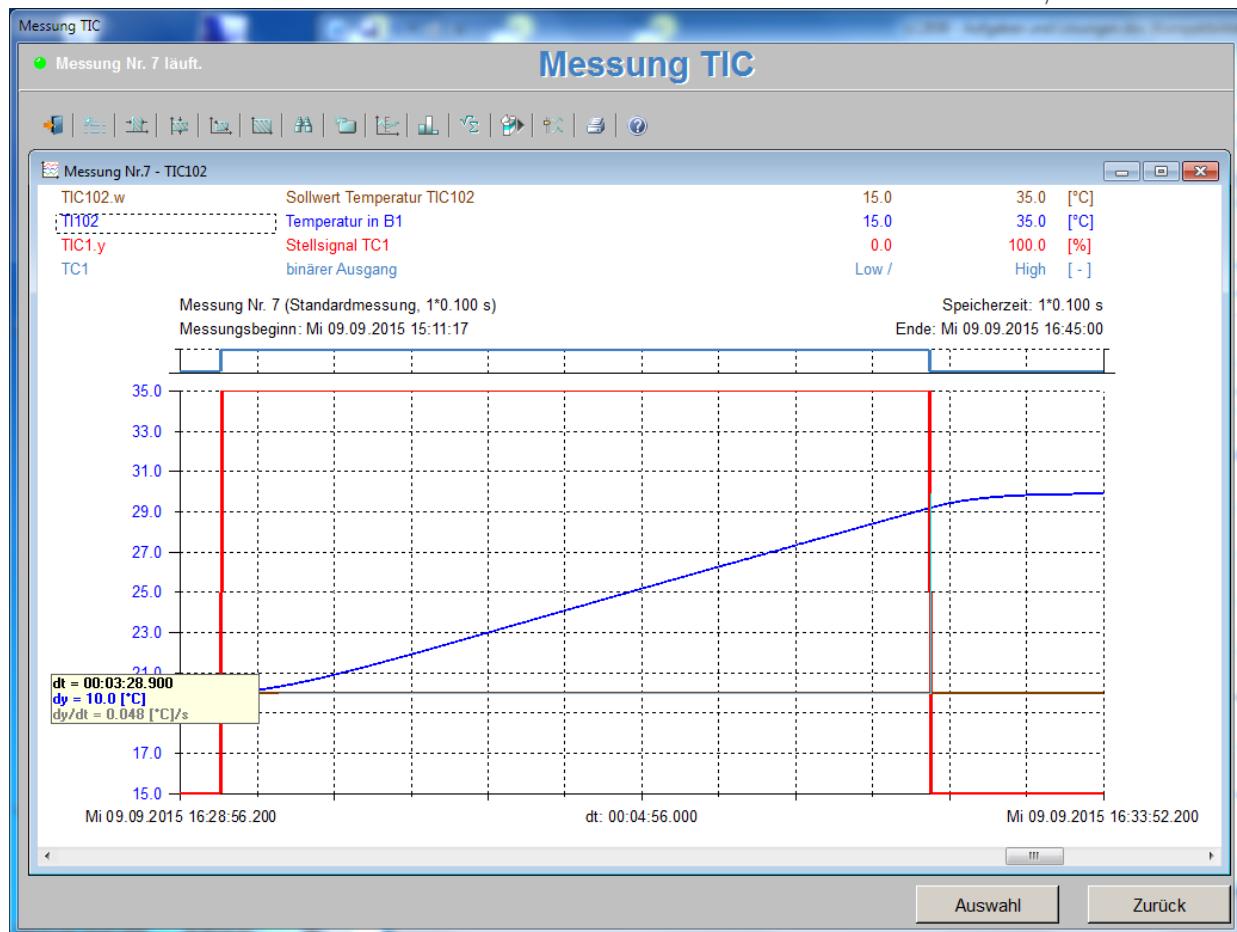


Fig.17: System response for determining the parameters according to Müller

TASK 4.5.14 Calculate controller parameters for PI controller and PID controller from the table and examine the transient response.

The pump M4 is switched off and the level is set to 20cm.

Information regarding errors, inaccuracies and expansion options are highly appreciated!

Ingenieurbüro Dr.-Ing. Schoop GmbH
Riechelmannweg 4
D-21109 Hamburg
Tel.: 040 / 754 922 30
www.schoop.de
Email: info@schoop.de